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Abstract

Federated Learning (FL) allows for the training
of Machine Learning models in a collaborative
manner without the need to share sensitive data.
However, it remains vulnerable to Gradient Leak-
age Attacks (GLAs), which can reveal private
information from the shared model updates. In
this work, we investigate the effectiveness of Dif-
ferential Privacy (DP) mechanisms — specifically,
DP-SGD and a variant based on explicit regular-
ization (PDP-SGD) — as defenses against GLAs.
To this end, we evaluate the performance of sev-
eral computer vision models trained under vary-
ing privacy levels on a simple classification task,
and then analyze the quality of private data re-
constructions obtained from the intercepted gradi-
ents in a simulated FL environment. Our results
demonstrate that DP-SGD significantly mitigates
the risk of gradient leakage attacks, albeit with a
moderate trade-off in model utility. In contrast,
PDP-SGD maintains strong classification perfor-
mance but proves ineffective as a practical defense
against reconstruction attacks. These findings
highlight the importance of empirically evaluat-
ing privacy mechanisms beyond their theoretical
guarantees, particularly in distributed learning sce-
narios where information leakage may represent
an unassumable critical threat to data security and
privacy.

Keywords: Data Leakage - Differential Privacy - Federated
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1. Introduction

Federated Learning (FL) has recently emerged as a crucial
paradigm in distributed training, enabling multiple entities
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(or nodes) to collaboratively train Machine Learning (ML)
models without the need to share their local data. This ap-
proach is especially valuable in scenarios where data privacy
is of utmost importance, such as in health-related applica-
tions. By keeping data on local nodes and only sharing
updates through the exchange of gradients, FL seeks to mit-
igate the risks associated with exposing sensitive data. This
strategy not only reduces the need to transfer large volumes
of data but also minimizes the risk of privacy breaches, since
data never leaves the local host and model updates are se-
curely aggregated on a central server. This allows models
to learn from a wide variety of data without compromising
individual privacy, as the updates do not directly reveal in-
formation about the local data of each node. In this sense,
FL presents itself as a promising solution to address the
challenges of privacy and security in ML, e.g., enabling
organizations to collaborate in developing robust shared
models without compromising the confidentiality of their
sensitive data.

However, despite its inherent privacy advantages, FL is
not immune to vulnerabilities. One of its most prominent
threats are Gradient Leakage Attacks (GLAs), in which
an adversary — potentially a malicious participant or an
entity intercepting communications as a man-in-the-middle
— can infer sensitive information about a client’s private
training data by analyzing the gradients, or parameter up-
dates, shared with the central server (Zhu et al., 2019; Zhao
et al., 2020). It has been shown that, under certain condi-
tions, original data instances can be reconstructed with high
fidelity from these gradients (Wei et al., 2020), posing a
considerable privacy breach and, thus, a significant risk to
data security.

To counter these threats and strengthen the privacy guaran-
tees of FL, Differential Privacy (DP) has become the gold
standard (Dwork et al., 2006; 2014). DP provides a rigorous
framework for quantifying and limiting the information that
an algorithm’s output reveals about any individual record. In
the context of ML, and more specifically FL, this is typically
achieved through mechanisms such as Differentially-Private
Stochastic Gradient Descent (DP-SGD) (Abadi et al., 2016),
which introduce calibrated noise into the training process
(specifically, by clipping the norm of individual gradients
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and adding Gaussian noise to the aggregated sum) to ob-
scure the contribution of each instance. Nevertheless, while
effective in guaranteeing privacy, the application of DP
often entails a trade-off in model performance (e.g., in
reduced accuracy) and may require careful tuning of its hy-
perparameters (such as the privacy budget € and the failure
probability §) (Abadi et al., 2016). Moreover, most recently,
alternatives and refinements to DP-SGD have emerged, such
as regularization-based approaches (Aguilera-Martinez &
Berzal, 2024), which aim to offer a different balance be-
tween privacy, utility, and computational efficiency.

This work explores the intersection of federated learning,
gradient leakage attacks, and differential privacy. Our main
objective is to investigate and evaluate the effectiveness
of DP mechanisms, particularly DP-SGD and related ap-
proaches, as defenses against GLAs in a simulated FL en-
vironment. To this end, we first introduce the fundamental
concepts of FL, GLAs, and DP. We then compare the per-
formance of several computer vision models trained with,
and without, differential privacy protection on a moderately
complex classification task. Then, we simulate a representa-
tive example of a gradient leakage attack and assess, both
quantitatively and qualitatively, the impact of DP on the
quality of the reconstructed data. Finally, we discuss the
results, highlighting the inherent trade-off between privacy
and utility, and outline potential limitations in this critical
area of information security within distributed ML.

In summary, the main contributions of our work! are the
following:

 To present the theoretical foundations behind differen-
tial privacy and gradient leakage attacks.

* To compare the performance of models trained with
and without privacy protection on a moderately com-
plex classification task.

» To simulate a representative example of a gradient
leakage attack and investigate the impact of differential
privacy on the quality of the reconstructed data.

2. Related Work

The study of security and privacy in distributed Machine
Learning builds upon several key concepts. Below, we pro-
vide a brief snapshot of the state-of-the-art in the areas most
relevant to this work, with technical details to be further
elaborated later in Section 3.

Federated Learning (FL): Originally introduced by McMa-
han et al. (2017) and further developed in subsequent works
such as those by Kairouz et al. (2021) and Li et al. (2020),

!Code available at https://github.com/miguelfrndz/Differential-
Privacy-GL-Attacks

Federated Learning is a decentralized ML paradigm that al-
lows multiple clients to collaboratively train a shared model
without the need to exchange their local data. This dis-
tributed approach is particularly well-suited for privacy-
sensitive applications, such as those involving medical or
biometric information, since the raw data remains on the
user devices or within the infrastructure of participating
organizations. FL aims to leverage the computational re-
sources and data heterogeneity distributed across clients,
while maintaining a foundational level of local data privacy
and security.

Gradient Leakage Attacks (GLA): However, it soon be-
came evident that the de facto privacy offered by standard
FL was limited against certain adversaries. Recent studies
have demonstrated that an attacker with access to gradients,
or parameter updates shared during federated training, can
reconstruct, with surprising fidelity in some cases, the pri-
vate data samples used to compute those gradients (Geiping
et al., 2020; Huang et al., 2021; Zhu et al., 2019; Zhao et al.,
2020). These attacks, generically referred to as Gradient
Leakage Attacks (GLA), expose a critical vulnerability that
can compromise the confidentiality of the obfuscated data.

Differential Privacy (DP): Introduced by Dwork et al.
(2006) and formalized in subsequent works such as (Dwork
et al., 2014), Differential Privacy has become the reference
framework for providing robust and quantifiable privacy
guarantees in data analysis and Machine Learning. DP of-
fers protection against a wide range of inference attacks,
including GLAs, by mathematically ensuring that the out-
put of an algorithm (e.g., model parameters or aggregated
gradients) does not reveal excessive information about any
individual entry in the original dataset. In Machine Learn-
ing, DP is commonly implemented through mechanisms
such as Differentially-Private Stochastic Gradient Descent
(DP-SGD) (Abadi et al., 2016), or via explicit regulariza-
tion methods (Aguilera-Martinez & Berzal, 2024), which
introduce calibrated noise during training to obscure individ-
ual contributions, although this often entails a frade-off in
the final model quality. Moreover, more recent approaches
explore alternative pathways, such as generating synthetic
datasets that intrinsically comply with differential privacy,
e.g., by leveraging Large Language Models (LLMs) to cre-
ate private synthetic textual data (Kurakin et al., 2023).

This work lies at the intersection of these three areas, specif-
ically evaluating the effectiveness of Differential Privacy
as a countermeasure against Gradient Leakage Attacks in
Federated Learning environments. However, it is worth not-
ing that, although the context of this work is framed within
federated learning, we will not delve deeply into its specific
aspects. Instead, we assume that model gradients have been
intercepted in an FL setting and focus exclusively on the
issues related to DP and the aforementioned attacks.
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3. Background

In this section, we detail the essential theoretical foundations
related to the concepts of Federated Learning (Section 3.1),
Gradient Leakage Attacks (Section 3.2), and Differential
Privacy (Section 3.3), providing the necessary groundwork
to understand the analysis and results presented later.

3.1. Federated Learning (FL)

Federated Learning (FL) is a distributed Machine Learn-
ing paradigm designed to enable multiple clients (e.g., mo-
bile devices, institutions, local servers) to collaboratively
train a global model without the need to share their local
training data (McMabhan et al., 2017; Kairouz et al., 2021;
Li et al., 2020). This allows for addressing critical concerns
related to privacy, security, and communication costs typ-
ically associated with centralizing data in traditional ML
workflows. Additionally, in the context of increasing regu-
latory constraints on data protection and governance (e.g.,
GDPR, HIPAA), FL offers a viable solution for comply-
ing with legal and ethical requirements imposed by current
legislation.

Typically, a standard FL system consists of the following
two main components:

¢ A set of client nodes (or workers), denoted by k €
{1,..., N}, each with its own local dataset Dy,, which
is not shared with other clients or with the server.

¢ A central server (or coordinator) that orchestrates the
training process and maintains the state of the global
model.

The training process itself is iterative and generally unfolds
over multiple communication rounds. In each round ¢:

1. Distribution: The central server selects a subset of
available clients (e.g., S; C {1,...,N}) and sends
them the current parameters of the global model 6,.

2. Local Training: Each client k£ € S; performs a local
training using the received model 6; and its own dataset
Dy.. This local training usually consists of running
one or more steps (epochs) of a standard optimization
algorithm, such as Stochastic Gradient Descent (SGD),

to minimize a local loss function £(9§k); Dy).

The result is an updated set of local parameters Ot(i)l,
or alternatively, a “computed” update such as the dif-
ference Ang) or the average gradient Vﬁ(@ﬁk); Dy,).

et(i)l =0, — n(k)VE(QEk)§ Dy) Q)

3. Communication: Clients £ € S; send their local
updates (i.e., et(?l or AGEk)) back to the central server.

It is important to note that the raw data Dy, never leaves
the client during this process.

4. Aggregation: The central server collects the updates
received from the clients participating in round ¢ and
aggregates them to produce an improved global model
0:+1. Several aggregation strategies exist, the most
common being Federated Averaging (FedAvg) (McMa-
han et al., 2017). In FedAvg, assuming clients return
their local parameters Gt(i)l, the server computes the
new global model as a weighted average as in (2).

n
b1 = ﬁkewgi)l (@)
keS, ¢

where ny = |Dj| is the number of data samples on
client k, and Ny = > kes, Tk is the total number of
samples across the participating clients in round ¢. This
weighting ensures that clients with more data have a
greater influence on the global model. The new global
model 6;,1 then becomes the reference for the next
training round.

Other aggregation alternatives include:

e Variants of FedAvg with different weighting
schemes or adaptive learning rates.

» Algorithms that aggregate gradients or parameter
differences instead of absolute parameters.

» Use of Secure Aggregation protocols (Bonawitz
et al., 2017), which employ cryptographic tech-
niques to allow the server to compute the sum (or
weighted average) of updates without accessing
the individual updates 9£i)1 or AH,EIC) from each
client. This provides an extra layer of privacy, pro-
tecting the updates even from the central server
itself.

This four-step cycle is repeated for a predefined number of
rounds or until the global model 6; converges according to
some criterion (e.g., accuracy on a global validation set or
the stabilization of the loss function).

While the federated learning paradigm improves privacy
by avoiding the need to centralize raw data, the updates
shared by clients may still reveal sensitive information
about their local data. Therefore, it is essential to implement
additional privacy and security mechanisms to protect data
confidentiality throughout the federated training process.

3.2. Gradient Leakage Attacks (GLA)

Although Federated Learning proposes a framework that
avoids sharing raw local training data, the model updates
(i.e., typically the gradients) that clients send to the central
server are not free from privacy concerns. It has been shown
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Figure 1. Conceptual Summary of the Three Pillars of This Work: Federated Learning (FL), Gradient Leakage Attacks (GLA), and

Differential Privacy (DP)

that these updates, while seemingly obfuscated, can con-
tain enough information for an adversary to infer, or even
reconstruct with relative fidelity, the private data samples
used to compute them (Zhu et al., 2019; Zhao et al., 2020;
Geiping et al., 2020; Gong et al., 2023). These methods are
collectively known as Gradient Leakage Attacks (GLA),
and we provide below a brief description of how they work.

A typical GLA scenario assumes an adversary with specific
capabilities. Generally, a white-box attack is considered,
where the attacker knows the model architecture, the loss
function £, and the model parameters 6; prior to the client’s
local update. The goal of the attacker is to intercept the
local update from client k before it is securely aggregated
with the updates from other clients. This adversary could be
an external entity intercepting communications (i.e., a man-
in-the-middle attack), or in some cases, the central server
itself if it has been compromised and no secure aggrega-
tion has been implemented (Bonawitz et al., 2017), or even
compromised client nodes acting maliciously (Gong et al.,
2023).

The core idea behind GLAs is to formulate data reconstruc-
tion as an inverse optimization problem. The attacker initial-

izes a “fake” or “seed” input (xr(eoc) , yr(eoc)) with random values

. . 0 .
(e.g., Gaussian noise for a:r(ec) and a random or inferred label

for yr(fc)). The attacker then computes the gradient veiﬂ)
that this fake input would produce in the model f with
the known parameters 6;. The goal is to iteratively adjust
(Zrecs Yrec) to minimize the discrepancy between the calcu-
lated gradient V8, and the real intercepted gradient Vé’gk)
asin (3).

(T Yioe) = argmin | Vo, £(f ('3 6,),5') — VOLF |12 (3)

i
Y

where || - || denotes the squared Euclidean norm.

If the attacker intercepts the updated parameters 9,5?1 in-
stead of the gradient directly, they can estimate the original
gradient, assuming they know, or can accurately estimate,
the local learning rate (%) used by the client:

o — 6
(k)  Yt+1 t
Vo, Nin(k) 4)

The optimization in (3) is typically carried out using
gradient-based methods, where the update is applied di-
rectly to the variables x.. and y.... However, optimizing
over Y. (wWhich often belongs to a discrete space) can be
challenging. A major breakthrough, proposed by Zhao et al.
(2020), showed that the correct label ... can often be in-
ferred directly by analyzing the signs or magnitudes of the
components of the intercepted gradient Vﬁgk) correspond-
ing to the weights in the final layer of the model. This allows
Yrec to be fixed, simplifying the optimization problem to fo-
cus solely on .

Algorithm 1 summarizes the general process of a gradient-
based reconstruction attack. After obtaining the target gra-
dient V&gk) (either directly or by deriving it from Gt(i)l), a
seed :cr(eoc) is initialized, and a label ¥, is either inferred or
initialized. Then, in an iterative loop governed by a stopping
condition T":

1. The attacker computes the gradient VQE; ) using the
current seed (;L'r(;), Yrec)-

2. A reconstruction loss D(™) is computed to measure the

distance between V@g; ) and veg’“), potentially includ-
ing regularization terms, weighted by «, such as the
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distance between the model output f (xr(;); 0;) and the
label yre (e.g., classification loss or regression equiva-
lent), or the total variation loss of xﬁe? (Geiping et al.,

2020).

3. The seed ;vr(eTc) is updated by taking a gradient descent
step on the loss D™ with respect to xﬁe?, using a
learning rate ' for the attack. As noted earlier, the
same can be done for yr(eTc) if it has not been directly
inferred from the gradients.

This process continues for a fixed number of iterations 7',
or until the reconstruction loss D7) converges below a
predefined threshold (both are valid termination criteria).
The choice of optimizer for updating (Zrec, Yrec) is important;
although the algorithm shows simple gradient descent, more
sophisticated optimizers such as L-BFGS (Liu & Nocedal,
1989) or Adam (Kingma & Ba, 2014) are commonly used
in practice due to their efficiency and ability to handle high-
dimensional problems (Wei et al., 2020). Hyperparameters
such as the number of iterations T, the learning rate 7/,
and the regularization weight o must be carefully tuned to
achieve high-quality reconstructions.

The demonstrated existence and effectiveness of GLAs un-
derlines a fundamental vulnerability in standard Federated
Learning, and strongly motivates the need for more robust
privacy-preserving mechanisms, such as Differential Pri-
vacy, which we discuss in the next section.

3.3. Differential Privacy (DP)

Differential Privacy (DP) (Dwork et al., 2006; 2014) has
become the de facto standard for providing reliable and
quantifiable privacy guarantees in the training of Machine
Learning models, where its goal is to limit the amount of
information an adversary can infer about the dataset used to
train a model. We present below some basic definitions and
theorems related to differential privacy. The two theorems
presented, following the notation commonly used across the
literature, are fundamental for understanding the concept
of DP and its application in the context of information se-
curity. In this case, both theorems are stated according to
the definition of differential privacy introduced by Dwork
et al. (2006) and in the seminal work of Abadi et al. (2016).
In essence, differential privacy is based on the idea that the
output of an algorithm should not depend excessively on any
single individual instance, ensuring that private information
cannot be inferred from the algorithm’s output.

Formally, differential privacy is defined in terms of the in-
distinguishability of the outputs of a model M — or more
generally, an algorithm .A — when applied to neighboring
datasets, i.e., datasets that differ by a single record (see Def-
inition 3.1). Based on this notion of neighborhood, the two

Algorithm 1 Gradient-Based Reconstruction Attack (Wei
et al., 2020; Gong et al., 2023)

1: Input: differentiable model f(z;6,), local gradient

from node k Vé)t(k), client learning rate 1(*), stop-
ping condition T', attack learning rate 7', regularization

weight o
2. if F)t(k) updated 9&)1 is available then
3:
(k) (éﬂ—ﬂﬁ
VO,
n(k)

4: end if
5: Initialize attack seed.: xﬁ?c)

6: Infer label: yec < argmin, (Vﬂt(k))
7: forr =1to T do

8 Compute attack gradient:

8‘6(-]0(:65;)7 01‘,)7 yrec)

Vol .

9:  Compute reconstruction loss:
D V05 = VO |+ all £ (221 00) e

,0D(™)
axﬁ;)

(7+1)

10:  Update seed: xrec' ' + xr(;) —-n

11: end for
12: Output: Reconstructed data (Zrec, Yrec)

main variants of differential privacy are defined in Theorems
3.2 and 3.3.

Definition 3.1 (Neighborhood in D). Let D, D’ € D be
two datasets defined over the same domain D. We say that
D and D’ are neighbors or adjacent if they differ in exactly
one instance, that is, if D can be obtained from D’ (or vice
versa) by adding or removing a single element.

Theorem 3.2 (e-Differential Privacy). An algorithm
A: D — R is e-differentially private if, for every pair of
neighboring datasets D, D' € D and for any subset E C R,
it holds that:

P(A(D) € E)< e -P(A(D') € E) 5)

That is, the probability that algorithm .4 produces an output
in the set F/ does not change significantly regardless of
whether dataset D or D’ is used.

Theorem 3.3 ((¢, 0)-Differential Privacy). An algorithm
A: D — R is (g,9)-differentially private if, for every pair
of neighboring datasets D, D’ € D and for any subset
E C R, it holds that:

P(AD)EE)< e -P(AD)EE)+5  (6)
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Algorithm 2 Differentially-Private Stochastic Gradient De-
scent (DP-SGD)

1: Input: loss function £(#), mini-batch size L, learn-
ing rate 7, clipping parameter C, noise o, number of
iterations 7'

Initialize: 6y randomly
fort =1toT do
Sample mini-batch B; of L instances
for each x; € B; do
Compute gradient: g; = VoL(0;—1,x;)
Clip: g; + g;/ max (1, %)
end for
Compute aggregated gradient:

(&
g 7 <Z gi> +N(0,02C?1)

=1

R AN A i

10:  Update parameters: 60; < 0;_1 — ng;
11: end for
12: Output: final parameters 0

Here, ¢ is the privacy budget, which measures the upper
bound on per-record privacy leakage. A lower € implies
stronger privacy. The parameter &, typically chosen to be a
small value (e.g., less than the inverse of the dataset size),
represents the probability that the e-DP guarantee may fail.
In other words, with probability (1 — 4), the algorithm
behaves as e-DP.

Moreover, this definition can be naturally extended to the
case where the two datasets D, D’ € D differ in more than
one instance. In this case, we talk about group privacy, and
although it is not commonly used in practice, we include its
definition in Lemma 3.4 (Gupta & Oakley, 2021; Jagielski
et al., 2020).

Lemma 3.4 (Group Differential Privacy). An algorithm
A: D — Ris group (g, 0)-differentially private if, for every
pair of neighboring datasets D, D' € D and for any subset
E C R, it holds that:

ke

P(A(D) € B) < ¥ . P(A(D) € B) + ——L5 (7)

e —1

where k is the number of instances by which the datasets
differ.

In summary, the main idea behind DP is that the inclusion,
or exclusion, of certain private training instances should not
significantly affect the outcome of our model. In this setting,
€ represents the privacy budget, which quantifies the level of
privacy achieved, and ¢ corresponds to a small probability
of error in maintaining or guaranteeing this privacy.

The most widely extended mechanism for achieving differ-
ential privacy is Differentially-Private Stochastic Gradi-

Algorithm 3 Basic Differential Privacy Accounting

1: Input: number of steps T, per-step privacy parameters
(e¢, 0;), model state M

2: Initialize: (¢, ;) < (g0, dp)

3: fort=1to 7T do

4: gy« ExtractEpsilon(My)

5:  0; + ExtractDelta(M;)

6: end for

7: Output: accumulated privacy { (e, 8¢) 1,

ent Descent (DP-SGD), proposed by Abadi et al. (2016) and
presented in Algorithm 2. DP-SGD modifies the standard
SGD procedure at two key steps in each training iteration
over a mini-batch B; of size L:

1. Gradient Clipping: Before aggregating the mini-
batch gradients, the individual gradients g; for each
sample z; € B; are computed as in (8).

Gi = VoLl(Or—1,2;), x; € By (8)

Then, the L, norm of each gradient is clipped to a

maximum threshold C according to (9).

gi < ¢i/ max (1, ”gé!h) 9)

This step is crucial because it limits the sensitivity
of the aggregated gradient to any individual sample.
Bounding the maximum influence of each data point
is a fundamental requirement for calibrating the added
noise properly.

2. Noise Addition: After computing the average of the
clipped gradients g;, random noise is added to the re-
sult, typically Gaussian. The noise is sampled from
N(0,02C?I), where I is the identity matrix, C is the
clipping threshold, and o is the noise multiplier. The
noise magnitude (x oC) is calibrated to obscure the
individual contribution of each sample in the aggre-
gated gradient g;, thereby providing the DP guarantee.
A larger o implies more noise, thus stronger privacy
(i.e., smaller €), but potentially lower practical utility.

Finally, the model parameters are updated using this noisy
aggregated gradient as in (10).

0y < 0i—1 —nG: (10

A fundamental aspect of iterative algorithms with DP, such
as DP-SGD, is the privacy budget tracking (privacy account-
ing, see Algorithm 3). Each step of DP-SGD consumes part
of the total budget (£, §) which must be tracked across the
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T training iterations. Simple composition (e.g., aggregat-
ing € and § across steps) provides valid but often overly
conservative bounds. In practice, more refined techniques
are used, such as Advanced Composition (Dwork et al.,
2014), or more commonly, accounting based on Rényi Dif-
ferential Privacy (RDP) (Mironov, 2017) or Privacy Loss
Distribution (PLD) analysis (Sommer et al., 2018), among
others (Zhu et al., 2022). These methods, often referred to
as privacy accountants, incorporate mini-batch sampling
probabilities and the noise mechanism (e.g., Gaussian) to
provide much tighter bounds on the accumulated budget
(e, 9) after T' steps. Tools such as Opacus (Yousefpour et al.,
2021) for PyTorch implement these advanced accountants
as a de facto standard.

The application of DP, and in particular DP-SGD, inevitably
introduces a privacy-utility trade-off. Adding more noise
(larger o, smaller €) to strengthen privacy guarantees, typ-
ically degrades model performance in classification or re-
gression tasks. Finding the right balance requires careful
tuning of both DP hyperparameters (e.g., C, o) and training
hyperparameters (e.g., ), L, T') for a target budget (¢, ).

Additionally, Lomurno & Matteucci (2022) showed that
some classical regularization methods (e.g., dropout or Ls)
behave similarly to DP-SGD in terms of privacy levels, with
a substantial reduction in computational cost and impact
on prediction quality. However, these techniques do not
provide the formal, quantifiable guarantees of differential
privacy.

More recently, following this same line of thought, Aguilera-
Martinez & Berzal (2024) demonstrated that the noise in-
jection and clipping of DP-SGD can be interpreted as an
implicit regularization of the loss function £. However, it
is important to note that this regularization is independent
of the model parameters 6. To address this, the authors in-
troduced a new method for differential privacy via explicit
regularization (PDP-SGD, Proportional DP-SGD), where
the injected noise is proportional to each parameter. In prin-
ciple, this yields better privacy guarantees more efficiently,
since any traditional optimization scheme can be used to
train our neural network.

In the context of federated learning, differential privacy is
typically applied locally. Each client runs DP-SGD, or the
chosen method, on its local data before sending updates to
the server. This protects client data not only from external
adversaries but also from the central server itself should it
be compromised. Likewise, it also acts as a direct defense,
at least in theory, against the gradient leakage attacks dis-
cussed earlier in Section 3.2, since the gradient intercepted
by an attacker would have already been previously perturbed
and thus should not reveal sensitive information about the
underlying training data.

Class Distribution in Train and Test Sets

8

Class Frequency (%)

nr 0000 0 Eeeeee

Not Hot-Dog Hot-Dog

Figure 2. Class Distribution in the Training and Test Splits

4. Methodology

In this section, we detail the experimental methodology
followed to evaluate the impact of Differential Privacy (DP)
on the performance of both image classification models and
on their ability to mitigate gradient leakage attacks (GLA).
Our objective is twofold:

* First, to compare the performance of different Com-
puter Vision (CV) architectures trained with, and with-
out, differential privacy guarantees under various pri-
vacy budgets;

» Second, to analyze qualitatively and quantitatively how
these mechanisms affect an adversary’s ability to re-
construct private training data from shared gradients,
simulating a GLA attack scenario.

4.1. Classification Using Differentially Private Models

To evaluate the trade-off between model privacy and utility,
we select a binary classification task with enough complex-
ity to observe significant performance differences under
different training conditions. An overly simple task, such as
the MNIST dataset used for the GLA simulation, may fail to
reveal performance degradations introduced by DP; while
an overly complex task may hinder the training of useful
models even without privacy.

Dataset: We use an outcome-balanced subset of the well-
known Food-101 dataset (Bossard et al., 2014) focused on
binary classification with an equal distribution of classes.
This dataset, with representative examples shown in Figure
3, consists of images belonging to two classes: hot-dog and
not hot-dog. As seen in Figure 2, the dataset is perfectly
balanced between the two classes in both the training and
evaluation sets, thus avoiding class imbalance biases.

Compared Models: In order to assess the impact of differ-
ent differential privacy methods across model architectures
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Not Hot-Dog

Not Hot-Dog Not Hot-Dog

Figure 3. Examples of Training Images (Hot-Dog vs Not Hot-Dog)

and training strategies, we compare three distinct computer
vision models:

e Simple Convolutional Neural Network (Custom-
CNN): A relatively small and standard CNN archi-
tecture (two convolutional layers with max-pooling,
followed by two linear layers), trained entirely from
scratch. This serves as a baseline for evaluating perfor-
mance without the benefit of pretraining.

ResNet50: We employ a ResNet50 (He et al., 2016)
pretrained on ImageNet (Deng et al., 2009). We apply a
fine-tuning strategy where all pretrained convolutional
layers have been frozen, and only a new final classi-
fication head is trained for our task. The ResNet50
architecture is based on residual blocks, which enable
training deeper networks without suffering from van-
ishing gradient problems. In this case, we use the
pretrained backbone as a feature extractor and train
only the final classification head. Figure 4 illustrates
the general architecture of ResNet50.

Vision Transformer (ViT) DINOv2 with Registers:
Finally, we employ an advanced Vision Transformer
(ViT) model, specifically DINOv2 (Oquab et al.,
2023), incorporating the registers technique (Darcet
et al., 2023). Registers are additional tokens intro-
duced during pretraining that help the model capture
global scene information, improving downstream per-
formance. More specifically, they remove artifacts
in ViT feature maps, as shown in Figure 5, and im-
prove classification performance. As with ResNet50,
we freeze the pretrained ViT backbone and train only
the final classification head for our task.

Training Methods: Each of the three models described
above has been trained under different regimes to compare
their performance with and without differential privacy pro-
tection:

1. Standard Training (No DP): Models have been
trained using the Adam optimizer (Kingma & Ba,
2014) and the standard binary classification loss, Bi-
nary Cross-Entropy (BCE) in (11). This serves as a
baseline scenario without any formal privacy guaran-
tees (¢ = o).

N
1
Loce =~ ;yi log(#i) + (1 — yi)log(1 —g:) (1D)

where N is the total number of instances, y; is the true
label, and §; = f(x;;6) is the model prediction for
instance ;.

2. DP-SGD: We train the models using the DP-SGD al-
gorithm, as described in Section 3.3 (Algorithm 2).
To assess the impact of different protection levels,
we use three privacy budgets (¢ = 8, ¢ = 25, and
e = 50), keeping § fixed and small (0 =~ 1/Nirqin,
where Nyyqip is the size of the training set). For the
implementation, we use the Opacus library by Meta
(Yousefpour et al., 2021).

3. PDP-SGD (Explicit Regularization): We also train
our models using the Proportional DP-SGD (PDP-
SGD) approach (Aguilera-Martinez & Berzal, 2024),
which implements DP via explicit loss function regu-
larization, where added noise is proportional to model
parameters. This method is included in order to com-
pare an alternative to DP-SGD which, theoretically,
should offer better results in terms of model perfor-
mance. The regularized loss function proposed by
PDP-SGD is given by (12).

Leop =L+ kY 077 (12)

where L is the original loss function (e.g., binary cross-
entropy in our case), and « is a regularization constant
related to the learning rate n and the noise parameter o
by k = n%0%. Moreover:

VQI. Lppp = Vgi,c + 2!&%?91‘ (13)

Regarding training hyperparameters, all models have been
trained with the Adam optimizer (Kingma & Ba, 2014), an
image size of 224 x 224 pixels (in RGB), an initial learning
rate of n = 0.001, and batch size L = 32. Additionally,
we use early-stopping as a training halting criterion where
training is terminated if no improvement on the validation
loss is observed over 20 consecutive epochs. For DP-SGD,
clipping size has been set to C' = 1.2 with a default noise
multiplier. Likewise, for the explicit PDP-SGD regulariza-
tion, we use a noise multiplier of o = 0.1 and a learning
rate of n = 0.1. In all cases, the validation was carried out
on a set comprising 20% of the total training data.
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Figure 4. ResNet50 Model Architecture (He et al., 2016)
Without registers With registers
DeiT-111 CLIP DINOv2 CLIP DINOv2

4.2. Reconstruction Attacks via Gradient Leakage

The second experimental component of this work focuses
on the simulation and analysis of reconstruction attacks
based on gradient leakages. Our goal is to investigate the
feasibility and limitations of recovering private training data
— specifically, images used to train a computer vision model,
for example — from gradients intercepted in a federated

learning environment under the influence of differential
privacy methods.

Dataset & Model: For this stage, we use the MNIST
dataset (LeCun et al., 1998), a standard benchmark for im-
age classification tasks consisting of grayscale handwrit-
ten digits. In this case, the images have been resized to
32 x 32 pixels, and the victim model architecture is a simple
Convolutional Neural Network (CNN), composed of four
convolutional layers followed by a linear (dense) layer for
classification. This architecture, while simple, is sufficient

Figure 5. Example of Artifact Removal in ViT Models with Registers (Darcet et al., 2023)

to demonstrate the feasibility of gradient leakage attacks in
a controlled environment.

Reconstruction Process: The attack aims to reconstruct
an image .. and its corresponding label .. such that the
gradients generated by this pair (V6,,) match the origi-
nal intercepted gradients (Vﬁt(k)) as closely as possible, as
described in Equation 3. In our case, we simultaneously
optimize both the reconstructed image and the label by em-
ploying an L-BFGS second-order optimizer (Liu & Nocedal,
1989). As mentioned in Section 3.2, the label can also be
inferred directly from the intercepted gradients, but in our
experiments, we found that jointly optimizing both the im-
age and label yields better reconstruction results.

Victim Model Training Scenarios: To evaluate the impact
of differential privacy methods as a safeguard against GLAs,
the reconstruction attack is performed on gradients obtained
from the victim CNN, trained (more on this later) under
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three different conditions, analogous to those used in the
classification task (Section 4.1):

1. Standard Training: Gradients from a model trained
in a standard manner, without any differential privacy
protection, are used. This serves as a baseline to de-
termine the maximum possible information leakage in
this scenario.

2. DP-SGD Training: Gradients are generated from a
model trained using DP-SGD. The same privacy bud-
gets (with § & 1/Nyy.qip,) and DP hyperparameters as
in the classification experiments are explored.

3. PDP-SGD Training (Explicit Regularization): Gra-
dients are obtained from a model trained with the Pro-
portional DP-SGD approach. The same regularization
hyperparameters (e.g., x derived from n = 0.1 and
o = 0.1) used in the classification task are employed.

Considerations on Attack Stability: One of the main chal-
lenges of gradient leakage reconstruction attacks is their in-
stability. The reconstruction optimization process is highly
sensitive to initialization and may converge to suboptimal
critical points (local minima or saddle points) which do not
correspond to the original data, or even diverge completely,
especially if the initialization is inadequate or the search
space is too complex. This lack of reliability is a significant
limitation and was a determining factor in choosing a rela-
tively simple dataset and model architecture (MNIST, small
CNN), with small, black-and-white images.

To partially mitigate these stability and convergence issues,
we initialize the neural network with a weight configuration
that leads to a stable reconstruction. In practice, this is
equivalent to assuming that the network has already been
trained for a few epochs and that its weights are in a region
of the parameter space that is conducive to convergence.
This assumption allows us to focus on the information leak-
age mechanism through gradients without the results being
obscured by an early divergence of the attack’s optimizer
due to poor model initialization.

Finally, although the general context of this work is framed
within federated learning, for this specific GLA simulation,
we assume that the gradients have been intercepted in a
federated learning environment, but in practice, the attack
is performed on a single, centrally trained model. This
allows us to study the information leakage process from
an individual client’s gradient without the added complex-
ity of multi-client aggregation or federated communication
protocols. The goal is to demonstrate the potential for in-
formation leakage at the level of a single gradient, which
is the fundamental unit of information shared in many FL
schemes.

5. Results & Discussion

In this section, we present and analyze the results derived
from the experiments described in Sections 4.1 and 4.2. The
content is organized as follows: first, we describe the eval-
uation metrics used to quantify both model performance
and the quality of reconstructions (Section 5.1). Next, we
report the results obtained in the classification task under
several differential privacy regimes, comparing the utility of
various privacy levels and protection mechanisms on the per-
formance of vision models (Section 5.2). Finally, we present
the results of the reconstruction attacks via gradient leakage,
where we assess both qualitatively and quantitatively the
quality of the reconstructed images under the influence of
DP-SGD and PDP-SGD, and discuss their effectiveness as
defense strategies against the recovery of sensitive informa-
tion (Section 5.3).

All experiments were run using PyTorch and Python 3.12.
Given the modest scale of the models and datasets, the ex-
periments can also be reproduced on any standard consumer-
grade GPUs.

5.1. Evaluation Metrics

To quantitatively evaluate the results obtained in the two
main experimental tasks of this work — image classification
and gradient-based reconstruction attacks — we employ
different sets of metrics adapted to each objective.

For the binary classification task (Hor-Dog vs Not Hot-
Dog), we use the standard metrics commonly applied to
classification problems, as presented in Table 1. These
metrics are derived from the entries of the confusion matrix:
True Positives (TP), True Negatives (TN), False Positives
(FP), and False Negatives (FN). Specifically, these metrics
are:

e Accuracy: The overall proportion of correct predic-
tions.

TP 4+ TN
Accuracy = + (14)
TP 4+ TN + FP 4 FN

 Precision: Among all instances predicted as positive,
how many were truly positive?

TP

Precision = ——
TP + FP

15)

Recall (Sensitivity): Of all instances that were truly

positive, how many were correctly identified?
TP

TP + FN

* Specificity: Of all instances that were truly negative,
how many were correctly identified?

TN

Recall = (16)
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e [ -Score: The harmonic mean of Precision and Recall,
providing a balance between the two. This is especially
useful in cases of class imbalance (although that is not
the case in this dataset).

Precision - Recall

=2 (18)

" Precision + Recall

¢ MCC (Matthews Correlation Coefficient): A corre-
lation coefficient between the observed and predicted
classifications. Considered a robust and balanced met-
ric even with imbalanced classes. It ranges from —1
(total disagreement) to 41 (perfect agreement), with O
indicating random correlation.

TP-TN — FP - FN

MCC =
/(TP + FP)(TP + FN)(TN + FP)(TN + FN)

19)

For the task of image reconstruction from the gradient leak-
age (GLA), the goal is to evaluate the similarity between the
original image x and the reconstructed image .. While
metrics such as the Mean Squared Error (MSE) are com-
mon, they do not always reflect human-perceived similarity.
Therefore, in this work, we focus on the Structural Similar-
ity Index Measure (SSIM) (Wang et al., 2004), specifically
designed to capture structural similarity between two im-
ages in a way that is more consistent with human visual
perception.

SSIM evaluates similarity based on three comparative com-
ponents between the two images (z and z’), typically com-
puted over local windows and then averaged:

1. Luminance: Compares the mean brightness of the
images, based on pixel intensity means (L, fz):

2 I+ c
I(z,2') = 2“1'%72—’—1 (20)
Mg+ pg +c1
Contrast: Compares the variation in intensity (dy-
namic range) around the mean, based on the standard
deviations (0., 0,/):

20,0, + Co

—_— . 21
oi—i—ai,—kcz @D

c(z,2") =

3. Structure: Compares the structural correlation be-
tween the images, based on covariance (0,):

’ Ogq’ + C3
— e TG 22
s(x,z) pep——— (22)
where ¢; = (kL)% co = (koL)?, and c3 = cy/2 are

stabilization constants to avoid division by zero, with L
being the dynamic range of the pixel values (e.g., 255 for
8-bit images), and k1, ko are two small constants (typically
k1 = 0.01, ke = 0.03).
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The global SSIM index is then defined as a combination of
these three components:

SSIM(z, 2') = [I(z,2")]* - [e(z, 2)]? - [s(z,2')]7 (23)

where > 0,5 > 0,7 > 0 are parameters controlling
the relative importance of each component. Commonly,
a = f = =1, simplifying the formula to:

(2/'630/'%’ + Cl)(20ww’ + 02)
(12 + p2 +c1)(02 + 02, + ¢2)

SSIM(z, ') = (24)
The SSIM value ranges between —1 and 1, where 1 indi-
cates perfect structural similarity between the two images.
Higher SSIM values indicate visually higher-quality recon-
structions in the context of GLA, meaning that the attacker
has recovered an image more closely resembling the origi-
nal.

5.2. Classification with Differentially Private Models

The quantitative results of the image classification task
(Hot-Dog vs Not Hot-Dog), using the different architectures
and training methods with and without differential privacy,
and evaluated with the metrics presented in Section 5.1, are
summarized in Table 1. The analysis of these results reveals
some general trends regarding the frade-off between the
strength of privacy guarantees and model utility (or perfor-
mance), as well as some noteworthy differences between
DP-SGD and explicit regularization (PDP-SGD).

Overall, and as expected, the introduction of differential
privacy through DP-SGD tends to degrade model perfor-
mance compared to the traditionally trained alternatives
(without DP, ¢ = o0). This degradation manifests itself in
most evaluation metrics (Accuracy, Fi-Score, MCC) and is
generally more pronounced the stricter the privacy budget
(i.e., the smaller the value of €). This phenomenon is a direct
consequence of the two core mechanisms behind DP-SGD:
gradient clipping, which limits the magnitude of individual
updates; and Gaussian noise injection, which obscures the
contribution of each data point, potentially interfering with
optimal model learning.

For the Simple Convolutional Neural Network (Custom-
CNN) trained from scratch, the standard training established
a modest baseline (e.g., Accuracy 0.584, MCC 0.168). Ap-
plying DP-SGD with € = 8 results in a significant per-
formance drop (Accuracy 0.562, MCC 0.131), particularly
driven by an extremely low Recall (0.342), suggesting that
the model becomes overly conservative in positive predic-
tions under strong privacy constraints. However, we observe
a notable exception with this architecture: for ¢ = 25 and
€ = b0, performance (in terms of Accuracy and MCC)
is slightly higher or comparable to that of standard train-
ing (e.g., Accuracy 0.598, MCC 0.198 for € = 25). This
anomaly may be attributable to the simplicity of the network



Differential Privacy: Gradient Leakage Attacks in Federated Learning Environments

Table 1. Classification Results Across 10 Independent Executions (Values Reported as Mean + Standard Error)

€  Accuracy Precision Recall Specificity P MCC
Convolutional Neural Network (Custom-CNN)
Standard Training oo 0.584i0.()05 0.586i0,006 0-572i0.010 0.596i0,()1] 0-579i0.006 0.168i0.009
DP-SGD (¢ = 8) 8 056210013 0.62910030 034210151 0.68210150 0.42810088 0.13140015
DP-SGD (e = 25) 25 059840015 0.61210024 0.53610118 0.66040155 0.57110038 0.19810.018
DP-SGD (e = 50) 50 0.588410010 0.65510019 037210019 0.80410033 047510009 0.19510.022
EXpliCit Regularization - 0.614:|:0_013 0.609:|:().019 0.636:|:0A011 0.592:|:0_()3() 0.622:‘:0.009 0.228:|:0_028
Pretrained ResNet50 (Fine-Tuning of Classification Head Only)
Standard Training oo 0.886i0.()03 0.873i0,005 0-904i0.002 0.868i0.()06 0.888i0.003 0-773i0.007
DP-SGD (¢ = 8) 8 0.8441 0006 0.83110015 0.86410018 0.82410020 0.84710006 0.68910012
DP-SGD (c = 25) 25 0.868:1000s 0.871i0008 0.86410012 0.872:0000 0.868-10005 0.73640.009
DP-SGD (e = 50) 50 0.86619003 0.87710011 0.85210015 0.88040011 0.86410004 0.73210.004
Explicit Regularization - 0.89219002 0.88310004 0.90410003 0.8804+0005 0.893410002 0.78410004

Pretrained DINOv2 w/ Registers (Vision Transformer, Fine-Tuning of Classification Head Only)

Standard Training oo 097240004 0.99210002
DP-SGD (= = 8) 8  0.96410002 0.99240002
DP-SGD (e = 25) 25 096810003 0.996.10001
DP-SGD (e = 50) 50 0968410001 0.99610001
Explicit Regularization -  0.976.10003 0.99010.002

0.95210007 0.99210001 097110004 0.94510007
0.93610003 099240001 0.96310002  0.92910.003
0.94010007  0.99610001  0.96710004 0.938.10.007
0.94210004 099610001  0.96810001  0.939+0.003
0.9621000s 099040002 0.97610003  0.95310.005

and the nature of the dataset; it is possible that the noise
and clipping inherent to DP-SGD act as an unintended form
of regularization. On the other hand, explicit regulariza-
tion (PDP-SGD) consistently improves all metrics for
the Custom-CNN (Accuracy 0.614, F}-Score 0.622, MCC
0.228), outperforming both the baseline and all DP-SGD
variants. This suggests that its mechanism, which in prac-
tice resembles an adaptive Lo regularization, is beneficial
in helping the model generalize better.

In the case of ResNet50 (pretrained with fine-tuning of the
classification head), the standard model already achieves
considerably high performance (Accuracy 0.886, MCC
0.773), owing to the pretrained features learned from Ima-
geNet. Here, the introduction of DP-SGD also follows the
general trend of degrading performance. For example, with
€ = 8, Accuracy falls to 0.844 and MCC to 0.689. As ¢
increases (weaker privacy), performance progressively re-
covers, approaching but not fully reaching the baseline (e.g.,
Accuracy 0.866 with € = 50). This behavior is expected,
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as the added noise has a more noticeable effect when the
model is already operating at high accuracy. Similarly to the
Custom-CNN, explicit regularization (PDP-SGD) achieves
a slight improvement over the baseline (Accuracy 0.892,
MCC 0.784).

Finally, for the DINOv2 with Registers (pretrained Vision
Transformer), the most advanced architecture, the stan-
dard baseline delivers exceptional performance (Accuracy
0.972, MCC 0.945). The application of DP-SGD, as in
the case of ResNet50, consistently reduces performance,
although the absolute magnitude of the drop is smaller in
percentage terms given the very high starting point (e.g.,
Accuracy 0.964 with e = 8). Improvement is observed
when moving from ¢ = 8 to ¢ = 25, but the results for
€ = 25 and € = 50 are nearly identical (Accuracy 0.968 in
both cases, MCC 0.938 and 0.939 respectively), suggesting
that, for this model and with the DP hyperparameters used,
a privacy-utility plateau is reached around these privacy
budgets. Interestingly, explicit regularization (PDP-SGD)
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achieves a slight improvement over standard training (Accu-
racy 0.976 vs 0.972, MCC 0.953 vs 0.945), demonstrating
that parameter-proportional regularization can still provide
benefits even for such advanced pretrained models. In fact,
the additional Lo-type regularization introduced by PDP-
SGD appears to consistently aid generalization across all
architectures, likely by preventing overfitting and promoting
smoother decision boundaries. However, its relative benefit
diminishes as the base model’s performance increases (e.g.,
DINOV2), indicating that highly capable architectures may
already possess sufficient implicit regularization through
their design and pretraining.

In summary, the classification results presented in Table 1
confirm that DP-SGD generally leads to a depreciation in
model utility. The exception observed in the Custom-CNN
for certain € values highlights that the interaction between
DP-SGD, the architecture of the model, and complexity of
the task at hand can be non-trivial. Conversely, explicit reg-
ularization (PDP-SGD) emerges as a promising alternative,
improving or at least maintaining performance in most cases,
likely because its effect is analogous to well-calibrated Lo
regularization that aids generalization. However, its benefit
may be null or even slightly negative in models that are
already highly effective and robust due to their architecture
and pretraining. We now turn to how these classification re-
sults translate into the effectiveness of reconstruction attacks
via gradient leakage (GLA) in the next section.

5.3. Reconstruction Attacks via Gradient Leakage

In this section, we delve into the results of the reconstruction
attack via gradient leakage (GLA), evaluating the ability of
an adversary to recover images from the MNIST dataset
using gradients obtained from a victim CNN. We analyze
how the different training regimes — traditional (no pri-
vacy), DP-SGD, and PDP-SGD — impact the quality of
such reconstructions. As mentioned in Section 4.2, it is
crucial to recall that these experiments start from a neural
network initialization that, in the baseline case without pri-
vacy, leads to a stable reconstruction trajectory. In this way,
we aim to evaluate the effectiveness of the reconstruction
attacks without any optimization instability interfering with
the results.

First, Figure 6 illustrates the progression of the reconstruc-
tion process over 200 iterations for a sample image when
gradients from a traditionally trained model (without any pri-
vacy protection) are used. Starting from an image of random
noise, the attack optimizer (L-BFGS in our case) progres-
sively refines the seed image until obtaining a reconstruction
that visually resembles the original. The final reconstruction
quality in this privacy-free scenario can be observed in the
leftmost image of Figure 7. While the reconstruction is not
identical to the original, the attack successfully recovers a vi-
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sually similar image with recognizable details and features,
albeit containing clearly visible artifacts and noise.

The attack optimization behavior is quantitatively reflected
in Figures 8 and 9. For traditional training (blue curve), the
gradient reconstruction loss in Figure 8 decreases exponen-
tially towards values close to zero, indicating that the attack
optimizer successfully aligns the gradients of the seed image
with the intercepted ones. At the same time, the SSIM index
(Figure 9, blue curve) rises rapidly, reaching values near 1,
confirming a high structural similarity between the original
and reconstructed images. This clearly demonstrates the
vulnerability of sharing unprotected gradients, as any poten-
tially malicious attacker can recover sensitive information
from training data.

When introducing DP-SGD during the victim model’s train-
ing (using the same privacy budgets and hyperparameters
as in the classification section, though results shown cor-
respond to a representative ¢, e.g., ¢ = 8, which already
provides strong protection), the situation changes radically.
The central image in Figure 7 displays the result of an at-
tempted reconstruction under DP-SGD. It is evident that the
attack fails to recover any meaningful information about
the original image; the output is essentially indistinguish-
able noise. This failure is corroborated quantitatively: the
reconstruction loss for DP-SGD (orange curve in Figure 8)
stagnates at a much higher value, while the SSIM (orange
curve in Figure 9) remains very low, indicating no structural
similarity. This is an expected and desirable outcome, as
it demonstrates the effectiveness of DP-SGD in perturbing
gradients to obscure sensitive information over individual
inputs, thereby preventing their reconstruction.

The most surprising and noteworthy finding arises when ana-
lyzing the results of attacks on gradients protected with PDP-
SGD. Contrary to what might be expected from a mecha-
nism designed to provide differential privacy, the image
reconstructed under PDP-SGD (rightmost image in Figure
7) is practically identical to that obtained in the no-privacy
scenario. The reconstruction loss and SSIM curves for PDP-
SGD (green curves in Figures 8 and 9) follow trajectories
almost indistinguishable from those of traditional training.
The attack minimizes gradient distance and maximizes struc-
tural similarity just as effectively as if no protection were
in place. This result is particularly curious when contrasted
with the claims of the original work introducing PDP-SGD
(Aguilera-Martinez & Berzal, 2024), which suggests that
PDP-SGD, acting as explicit parameter-proportional regu-
larization, not only offers differential privacy guarantees but
may do so more efficiently than DP-SGD.

However, our gradient reconstruction experiments indicate
that, at least under the tested configuration and in the context
of image reconstruction, PDP-SGD does not provide any
discernible protection against this type of attack, behaving
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Figure 6. Reconstruction Progression of a Training Example from Model Gradients (No Privacy)

Reconstructed Reconstructed Reconstructed

Figure 7. Final Reconstruction of a Training Instance from the
Leaked Model Gradients (From Left to Right: No Privacy vs DP-
SGD vs PDP-SGD)

Loss Evolution

Figure 8. Evolution of the Gradient Reconstruction Loss Across
Attack Iterations

very similarly to standard training. A possible explanation,
though requiring deeper investigation, may lie in the nature
of the regularization imposed by PDP-SGD. While it for-
mally satisfies the definition of DP, the way it perturbs (or
fails to sufficiently perturb) the information seems funda-
mentally different from the clipping and noise addition of
DP-SGD. Because PDP-SGD injects noise proportional to
parameters, for small parameters the effective perturbation
may be minimal, or the noise structure may fail to obscure
the crucial features exploited by the attack.

In short, image reconstruction results from gradients re-
veal a significant vulnerability in traditional training, where
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Figure 9. Evolution of the Structural Similarity Index (SSIM)
Across Attack Iterations (Note: The lower plot zooms in on the
[0.85, 1] range to better visualize convergence in the region)

an attacker can recover sensitive data. DP-SGD, on the
other hand, proves highly effective in mitigating this threat,
at least in the context of image reconstruction; whereas
PDP-SGD, while promising in terms of regularization and
differential privacy, does not appear to provide effective
protection against gradient reconstruction attacks in its cur-
rent form. This raises serious questions about the applica-
bility and effectiveness of PDP-SGD as a robust privacy-
preserving mechanism in practical scenarios.

Finally, beyond the effectiveness of the tested attacks, the
sensitivity of these methods to getting stuck in local op-
tima or diverging during attack optimization is noteworthy.
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While the literature documents GLA reconstruction attacks
as robust and convergent; in our experiments, we frequently
observe optimization trajectories diverging or stalling in
local optima, despite using a second-order optimizer such
as L-BFGS. Moreover, in multiple additional tests not doc-
umented in this paper, we consistently found that these
attacks face serious limitations with relatively large or multi-
channel images. In fact, Zhu et al. (2019) had already doc-
umented the limitations of these attacks for images larger
than 64 x 64 pixels. In any case, we believe this does not
diminish the significance of our results; rather, it highlights
the need for further investigation into the effectiveness of
gradient leakage reconstruction and other adversarial attacks
in the context of differential privacy.

6. Conclusion

In this work, we have focused on the critical intersection
between Federated Learning (FL), Gradient Leakage At-
tacks (GLA), and Differential Privacy (DP), with the main
objective of evaluating the effectiveness of DP mechanisms,
in particular DP-SGD and an alternative based on explicit
regularization (PDP-SGD), as defenses against GLAs, as
well as their impact on the utility of ML models.

The results obtained in the image classification task broadly
confirm a well-known privacy-utility trade-off when em-
ploying DP-SGD. As stricter privacy constraints are im-
posed, model performance tends to degrade; although ex-
ceptions have been observed with simpler architectures,
where DP-SGD may act as a beneficial form of regular-
ization under certain privacy budgets. On the other hand,
PDP-SGD emerges as an interesting alternative, improving
or maintaining classifier performance in all cases.

With respect to the simulation of gradient leakage attacks on
the MNIST dataset, the findings are somewhat revealing. As
expected, in the absence of protection mechanisms, GLAs
are capable of reconstructing recognizable images from in-
tercepted gradients. The application of DP-SGD proves,
however, to be a highly effective countermeasure, success-
fully preventing reconstruction and resulting in outputs that
amount to little more than noise, with very low structural
similarity scores.

By contrast, the most surprising and concerning result
comes from the evaluation of PDP-SGD in the context of
GLAs. Despite its formal differential privacy guarantees,
PDP-SGD does not provide discernible protection against
this type of attack in our experiments. Reconstructed im-
ages under PDP-SGD were practically indistinguishable
from those obtained without protection, with SSIM values
close to the non-privacy scenario. This suggests that, al-
though a mechanism may satisfy the theoretical definition
of (&, 0)-DP, the specific way in which privacy is introduced
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(e.g., parameter-proportional noise instead of clipping and
noise addition) may not suffice to obfuscate the information
exploited by certain attacks.

Ultimately, we emphasize the importance of not relying
solely on theoretical privacy guarantees, but also on empir-
ically evaluating the resilience of DP mechanisms against
attack vectors that are relevant and specific to the application
setting. The apparent disconnect between the formal protec-
tion of PDP-SGD and its practical ineffectiveness against
GLAs, in our view, deserves deeper investigation.
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A. Reconstruction Attack via Gradient Leakage

A.1. Attack in a Non-Differentially Private Setting

iter=90

Figure 10. Reconstruction Progression of a Training Example from Model Gradients (No Privacy)

A.2. Attack in a Differentially Private Setting (DP-SGD)
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Figure 11. Reconstruction Progression of a Training Example from Model Gradients (DP-SGD)

A.3. Attack in a Differentially Private Setting (PDP-SGD)

iter=30 iter=40 iter=90

Figure 12. Reconstruction Progression of a Training Example from Model Gradients (PDP-SGD)
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